These Notes are to SUPPLEMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test! The author is not responsible for typos in these notes.

Chapter 4, Stoichiometry: Quantitative Information about Chemical Reactions

Sparkler, powdered iron reacts with oxygen
Thermite, reduction of iron III, very exothermic:
$4 \mathrm{Fe} \downarrow+3 \mathrm{O}_{2} \uparrow \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3} \downarrow$
$\mathrm{Fe}_{2} \mathrm{O}_{5} \downarrow+2 \mathrm{Al} \downarrow \rightarrow 2 \mathrm{Fe}(\mathrm{l})+\mathrm{Al}_{2} \mathrm{O}_{3} \downarrow$
4.1 Mass Relationships in Chemical Reactions: Stoichiometry

A balanced chemical equation shows:

- The quantitative relationship between reactants and products in a chemical reaction
- The number of moles of each reactant and product
- The coefficients relate the number of moles of each substance to each other

$\mathrm{P}_{4} \downarrow$	$6 \mathrm{Cl}_{2} \uparrow$	\rightarrow	$4 \mathrm{PCl}_{3}(1)$
1 mole	6 mole		4 mole
$124 . \mathrm{g}$	$425 . \mathrm{g}$		$549 . \mathrm{g}$

One mole of P_{4} reacts with 6 moles of Cl_{2} to produce 4 moles PCl_{3}
What if we only had 1.45 g of P_{4}, how much PCl_{3} in grams is formed?
METHOD \#1 The Old Fashion Way (taught it this way up to this year)
Step 1: Write the balanced equation - see above
Step 2: Calculate the amount (moles) from mass (grams)
$1.45 \mathrm{~g} \mathrm{P}_{4} *\left(1 \mathrm{~mole}_{4} / 123.9 \mathrm{~g} \mathrm{P}_{4}\right)=0.0117$ mole $_{4}$
$\longrightarrow \mathrm{P}=30.97 \mathrm{~g} / \mathrm{mole} \quad 4 \mathrm{P}=123.88 \mathrm{~g} / 4$ mole
Step 3: Use a stoichiometric factor, put in a conversion factor so the units cancel out 0.0117 mole $\boldsymbol{P}_{4}{ }^{*}\left(6 \mathrm{~mole} \mathrm{Cl}_{2} / 1\right.$ mole $\left.\boldsymbol{P}_{4}\right)=0.0702{\mathrm{~mole} \mathrm{Cl}_{2}}^{2}$

1 mole P_{4} cancels out

Step 4: Calculate mass from amount
0.0702 mole Cl $_{\mathbf{2}}{ }^{*}\left(70.91 \mathrm{~g} \mathrm{Cl}_{2} / 1\right.$ mole $\left.^{\mathbf{~ C l}} \mathbf{2 l}_{\mathbf{2}}\right)=\mathbf{4 . 9 8} \mathbf{g ~ C l}_{\mathbf{2}}$ Always box in your answer
mole Cl_{2} cancels out $\longrightarrow \mathrm{Cl}=35.45 \mathrm{~g} / \mathrm{mole} \quad \mathrm{Cl}_{2}=70.90 \mathrm{~g} / \mathrm{mole}$
Note: Book has a rounding error 70.91 instead of 70.91
Now calculate the amount of PCl_{3} (l) produced
Since there is mass conservation, total wt of reactants = total weight of products
Total wt of products $=1.45 \mathrm{~g} \mathrm{P}_{4}+4.08 \mathrm{~g} \mathrm{Cl}_{2}=\mathbf{6 . 4 3} \mathbf{g ~ P C l}_{\mathbf{3}}$ ()

You could also calculate it from

$$
0.0117 \mathrm{~mole}_{\mathrm{P}}^{4} *\left(4 \mathrm{PCl}_{3(\mathrm{I})} / 1 \mathrm{~mole} \mathrm{P}_{4}\right)=0.0468 \mathrm{~mole} \mathbf{P C l}_{3}
$$

Mw Calculation: $1 \mathrm{P} \quad 1^{*} 30.97 \mathrm{~g} / \mathrm{mole}$
$30.97 \mathrm{~g} / \mathrm{mole}$
$3 \mathrm{Cl} \quad 3{ }^{*} 35.56 \mathrm{~g} / \mathrm{mole} \quad 106.35 \mathrm{~g} / \mathrm{mole}$ $\begin{array}{ll}\text { Mw } \mathrm{PCl}_{3} & 137.32 \mathrm{~g} / \text { mole }\end{array}$ 0.0468 mole $\mathbf{P C l}_{3}{ }^{*}\left(137.3 \mathrm{~g} \mathrm{PCl}_{3}\left(\right.\right.$ (I) $/ 1 \mathrm{~mole} \mathrm{PCl}_{3}$ (I) $)=\mathbf{6 . 4 3} \mathbf{g} \mathbf{P C l}_{\mathbf{3}}$ (1)

METHOD \#2 The Amounts Table (New Method, Currently used in Chem II)
Initial Amount in moles Starting amount of each reactant and product

Change
Final Amount in moles
Equation Initial Amount

Change that occurs during the reaction
Final amount of each reactant and product after the reaction

	1. 0.0117 mole 1. $(1.45 \mathrm{~g})$	2. 0.0702 mole 2. $(4.98 \mathrm{~g})$	3. o mole 3. (og)
Change in Amount	- 0.0117 mole	- 0.0702 mole	$\begin{aligned} & +(4 * 0.0117 \mathrm{~m} \\ & + \text { o.0468 mole } \end{aligned}$
Amount after Rx	$\begin{aligned} & \mathrm{o} \mathrm{~mol} \\ & (\mathrm{og}) \end{aligned}$	$\begin{aligned} & \mathrm{o} \mathrm{~mol} \\ & (\mathrm{og}) \end{aligned}$	$\begin{aligned} & 0.0468 \mathrm{~mol} \\ & (6.43 \mathrm{~g}) \end{aligned}$

METHOD \#3 My Way Calculate the Molecular Weight of the "Whole Entity" and then set up a ratio table. This is similar to Amounts Table; we do it like this in Grad School and in Industry!
Equation

$$
\text { P4 } \downarrow+
$$

$$
6 \mathrm{Cl}_{2} \uparrow
$$

$$
\rightarrow \quad 4 \mathrm{PCl}_{3}(\mathrm{I})
$$

Calculate the Mw's:
$\mathrm{P}=30.97 \mathrm{~g} / \mathrm{mole} \quad \mathbf{P}_{4}=4{ }^{*} 30.97 \mathrm{~g} / \mathrm{mole}=123.88 \mathrm{~g} /{ }^{\prime}$ Mole $\mathrm{P}_{4} "$

Minor Changes in notes from here on

$4 \mathrm{PCl}_{3} \quad 4 \mathrm{P}=4^{*} 30.97 \mathrm{~g} / \mathrm{mole} \mathrm{P}=123.88 \mathrm{~g} / \mathrm{mole} \mathrm{P} 4$

$$
\begin{aligned}
& 12 \mathrm{Cl}=12{ }^{*} 35.45 \mathrm{~g} / \mathrm{mole} \mathrm{Cl}=\quad 425.40 \mathrm{~g} / \mathrm{mole} 12 \mathrm{Cl}\left(\text { or } 4 \mathrm{Cl}_{3}\right) \\
& \text { Mw } 4 \text { PCl }_{3}=549.28=\mathbf{5 4 9 . 2 8} \mathbf{g} / \text { "Mole } 4 \mathbf{P C l}_{\mathbf{3}} \text { " }
\end{aligned}
$$

Equation
P4 \downarrow +
$6 \mathrm{Cl}_{2} \uparrow \quad \rightarrow 4 \mathrm{PCl}_{3}$ (I)
Amount
1.45 g ?

Moles of Whole Entity $\quad 123.88 \mathrm{~g} /$ mole P4
$549.28 \mathrm{~g} /$ "Mole $4 \mathrm{PCl}_{3} "$
Now set up a ratio equivalence of the weight of starting material (1.45 g) to molecular weight of the entire starting material ($123.88 \mathrm{~g} /$ "Mole P_{4} ") equals X (the amount of product to be determined) to the molecular weight of the product (549.3 g / "Mole $4 \mathrm{PCl}_{3}{ }^{3}$)

$$
\frac{1.45 \mathrm{~g}}{123.88 \mathrm{~g} /{ }^{\text {Mole } \mathrm{P}_{4} "}}=
$$

$$
\mathbf{X}=6.429254=6.43 \mathrm{~g} 4 \mathrm{PCl}_{3}
$$

Example 4.1 25.0 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ reacts with O_{2} to give CO_{2} \& $\mathrm{H}_{2} \mathrm{O}$. How much O_{2} is needed? Remember - you must start with a Balanced Equation!

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

$6 \mathrm{C} \quad 6^{*} 12.01 \quad 72.06 \mathrm{~g} / \mathrm{mole} \quad$ You must show all calculations including calculation $12 \mathrm{H} \quad 12$ * $1.007 \quad 12.084 \mathrm{~g} / \mathrm{mole}$ of molecular weight and Sig Digit (SD) rounding 6 O 6 * 16.00 $96.00 \mathrm{~g} / \mathrm{mole}$

$$
180.144 \mathrm{~g} / \mathrm{mole}=\mathbf{1 8 0 . 1 4} \mathrm{g} / \mathrm{mole}
$$

Determine the amount of O 2

1. Determine moles of glucose: \quad Moles $=\mathrm{Wt} / \mathrm{Mw}$ $25.0 \mathrm{~g} / 180.14 \mathrm{~g} / \mathrm{mole}=0.13878=\mathbf{0 . 1 3 9}$ mole glucose
2. Use stoichiometric factor to determine the number of moles of O 2

$$
0.139 \text { mole glucose } * \frac{6 \text { mole } \mathrm{O} 2}{1 \text { mole glucose }}=\mathbf{0 . 8 3 4} \text { mole } \mathbf{O}_{2}
$$

3. Determine amount (wt ing) of $\mathrm{O}_{2} \quad$ Moles $=\mathrm{Wt} / \mathrm{Mw} \rightarrow \mathrm{Wt}=$ Moles ${ }^{*} \mathrm{Mw}$

$$
0.834{\text { mole } \mathrm{O}_{2}}^{*} 32.00 \mathrm{~g} / \mathrm{mole}_{2}=26.688=\mathbf{2 6 . 7} \mathbf{g ~ O}_{\mathbf{2}}
$$

Determine the amount of CO_{2} produced:
4. Use stoichiometric factors

$$
\begin{gathered}
\text { 0.139 mole glucose * } \underset{\substack{ \\
1 \text { mole glucose }_{2}}}{*} \underset{\substack{6 \mathrm{moleO}_{2} \\
1 \mathrm{~mole} \mathrm{CO}_{2}}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}=36.70=\mathbf{3 6 . 7} \mathbf{g ~ C O}_{\mathbf{2}} \\
\leftarrow \text { Stoichiometric } \rightarrow \\
\text { Factor } \\
\leftarrow \text { Convt Moles } \rightarrow \\
\text { to Grams }
\end{gathered}
$$

Determine the amount of H 2 O produced by adding wt of reactants and subtracting wt of CO_{2}
5. 25.0 g glucose $+26.7 \mathrm{~g} \mathrm{O} 2-36.7 \mathrm{~g} \mathrm{CO} 2=\mathbf{1 5 . 0} \mathbf{g ~ H 2 O}$

METHOD \#2 Amounts Table

Equation	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+$	$6 \mathrm{O}_{2} \quad \rightarrow$	$6 \mathrm{CO}_{2}+$	$6 \mathrm{H}_{2} \mathrm{O}$
Initial Amount	0.139 mole	$\begin{aligned} & 6 * 0.139 \text { mole } \\ & =0.834 \text { mole }(\mathrm{N} \end{aligned}$	0 math error in	0 book says 0.832)
Change in Amount	- 0.139 mole	- 0.834 mole	$\begin{aligned} & 6 * \text { o. } 139 \text { mole } \\ & \text { +o.834 mole } \end{aligned}$	$\begin{aligned} & 6^{*} \text { o. } 139 \mathrm{~mole} \\ & +0.834 \mathrm{~mole} \end{aligned}$
Amount after Rx	0	0	o.834 mole	o. 834 mole

Now determine the wt of $\mathrm{H}_{2} \mathrm{O}$ formed. From: Moles $=\mathrm{Wt} / \mathrm{Mw}$ Derive: $\mathrm{Wt}=$ Moles ${ }^{*} \mathrm{Mw}$
$\begin{array}{llll}\mathrm{Mw} \mathrm{H} & \mathrm{O} & 2 \mathrm{H} & 2\end{array}{ }^{*} 1.008 \mathrm{~g} / \mathrm{mole} \quad 2.016 \mathrm{~g} / \mathrm{mole}$
$1 \mathrm{O} \quad 1^{*} 16.00 \mathrm{~g} / \mathrm{mole} \quad 16.00 \mathrm{~g} / \mathrm{mole}$ $18.016=18.02 \mathrm{~g} / \mathbf{m o l e} \mathrm{H}_{2} \mathrm{O}$
Wt $=$ Moles ${ }^{*} \mathrm{Mw}=0.834$ moles ${ }^{*} 18.02 \mathrm{~g} / \mathrm{mole}_{2} \mathrm{O}=15.02868=\mathbf{1 5 . 0} \mathbf{g} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

METHOD \#3 My Way
Equation $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Mw of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is $180.14 \mathrm{~g} / \mathrm{mole}$ from above

$$
\begin{array}{lrr}
\text { Mw } 6 \mathrm{H}_{2} \mathrm{O} & 12 \mathrm{H} & 12{ }^{*} 1.008 \mathrm{~g} / \mathrm{mole} \quad 12.096 \mathrm{~g} / \mathrm{mole} \\
& 6 \mathrm{O} & 6^{*} 16.00 \mathrm{~g} / \mathrm{mole} \begin{array}{l}
\frac{96.00}{\mathrm{~g}} / \mathrm{mole} \\
108.096 \\
=108.10 \mathrm{~g} / \mathrm{mole} 6 \mathrm{H}_{2} \mathrm{O}
\end{array}
\end{array}
$$

So, we can re-write the above equation as below. Amount is above the reaction, Mw below:
25.0 g

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \quad \rightarrow \quad 6 \mathrm{CO}_{2}+$| 18.0 g |
| :--- |
| $180.14 \mathrm{~g} /$ mole |$+$| $6 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| $108.10 \mathrm{~g} / \mathrm{mole}$ |

Now set up a ratio of grams over $\mathrm{Mw}=$ grams over mw

$$
\begin{aligned}
& \frac{25.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.14 \mathrm{~g} / \mathrm{mole}_{6} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \quad=\quad \frac{\mathrm{X}}{6^{*} 18.02 \mathrm{~g} / \mathrm{mole} \mathrm{H}_{2} \mathrm{O}} \\
& \mathbf{X = 1 5 . 0} \mathbf{g ~ H}_{2} \mathbf{O}
\end{aligned}
$$

4.2 Limited Supply

Limiting reactant is one where its amount determines or limits the amount of product formed. One reactant is in excess and one is the limiting reactant. You can tell that a reaction is a Limiting Reactant if the amount (wt or moles) of at least 2 of the starting materials is given, one is probably in excess!

Toy Sparkler: the amount of Al and KNO 3 determine the amount of product, because there is an excess amount of oxygen available:

$$
4 \mathrm{Al} \downarrow+3 \mathrm{O} 2 \uparrow \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3} \downarrow
$$

Converting CO to CO 2 you use excess $\mathrm{O} 2 \quad 2 \mathrm{CO} \uparrow+\mathrm{O} 2 \uparrow \rightarrow 2 \mathrm{CO} 2 \uparrow$ Oxygen in the air is in excess in both cases

Stoichiometry Calculation with a limiting reactant
What if you have 750.g of each starting material, how much product is formed?

> | You must show | | | all Mw Calculations |
| :--- | :--- | :---: | :---: |
| Mw of NH3 | | | |
| $\mathrm{N} \quad 1^{*} 14.01$ | $14.01 \mathrm{~g} / \mathrm{mole}$ | | |
| $\mathrm{H} \quad 3^{*} 1.008$ | $\underline{3.024}$ | | |
| Mw of NH3 $=$ | $\mathbf{1 7 . 0 3 4}=\mathbf{1 7 . 0 3} \mathbf{~ g} / \mathbf{m o l e}$ | | |

$4 \mathrm{NH}_{3} \uparrow+5 \mathrm{O}_{2} \uparrow \rightarrow 4 \mathrm{NO} \uparrow+6 \mathrm{H}_{2} \mathrm{O} \uparrow$
750.g 750.g

Just for fun, let's work out the balancing of the above REDOX equation:
We start with: $\quad \mathrm{NH}_{3} \uparrow+\mathrm{O}_{2} \uparrow \rightarrow \mathrm{NO} \uparrow+\mathrm{H}_{2} \mathrm{O} \uparrow$
Nitrogen (N) in $\mathrm{NH}_{3} \uparrow$ has an Oxidation Number of -3 (Each His in, it's not a hydride where it would be -1 each)
Nitrogen (N) in NO has an Oxidation Number of +2 (Oxygen is always -2, except in Peroxides)
Oxygen in O_{2} is a pure element, so it has an Oxidation Number of o (Zero)
Oxygen (O) in NO has an Oxidation Number of -2

$$
\mathrm{N}^{-3} \mathrm{H}_{3} \uparrow+\mathrm{O}_{2} \uparrow \rightarrow \mathrm{~N}^{+2} \mathrm{O}^{-2} \uparrow+\mathrm{H}_{2} \mathrm{O}^{-2} \uparrow \quad \text { Oxidation Numbers are Super Script }
$$

Break this down to half reactions: $\quad \mathrm{N}-3 \quad \rightarrow \mathrm{~N}^{+2}+5 \mathrm{e}^{-}$

$$
\mathrm{O}^{\mathbf{o}_{2}}+4 \mathrm{e}^{-} \rightarrow \mathrm{O}^{-2}+\mathrm{O}^{-2}
$$

Now to balance he electrons, you multiply the top equation by 4 and the bottom by 5

$$
\begin{array}{ll}
4 *\left[\mathrm{~N}^{-3}\right. & \left.\rightarrow \mathrm{N}^{+2}+5 \mathrm{e}^{-}\right] \\
5^{*}\left[\mathrm{O}_{2}+4 \mathrm{e}-\right. & \left.\rightarrow \mathrm{O}^{-2}+\mathrm{O}^{-2}\right]
\end{array}
$$

Combine them and get:

$$
4 \mathrm{~N}^{-3}+5 \mathrm{O} 2+20 \mathrm{e}^{-} \rightarrow 4 \mathrm{~N}^{+2}+10 \mathrm{O}^{-2}+20 \mathrm{e}^{-}
$$

Canceling out the 20 electrons on both sides and adding in the Spectator Ions (12 H) we get:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

METHOD \#1 The Old Fashion Way

Step 1: Find the amount of each reactant in moles
750. $\mathrm{g} \mathrm{NH} 3 / 17.03 \mathrm{~g} / \mathrm{mole}_{\mathrm{NH}}^{3}=44.0399=44.0 \mathrm{~mole} \mathbf{N H}_{3}$
$750 . \mathrm{g} \mathrm{O2} / 32.00 \mathrm{~g} / \mathrm{mole} \mathrm{O}_{2} \quad=23.437=23.4$ mole $\mathbf{O}_{\mathbf{2}}$
Step 2: What is the limiting reactant
Stoichiometric ratio $=5$ mole $\mathrm{O} 2 / 4$ mole $\mathrm{NH}_{3}=1.25 \mathrm{~mole}_{2} / \mathrm{NH}_{3} \quad$ Theoretical
Ratio available $=23.4$ mole O2 $/ 44.0$ mole $\mathrm{NH}_{3}=0.532$ mole $\mathrm{O}_{2} / \mathrm{NH}_{3}$
Actual
The available ratio is smaller (0.532 moles <1.25 moles) so there is not enough \mathbf{O}_{2}
$\mathbf{O 2}$ is the limiting reagent and used for all calculations. $\mathbf{N H}_{3}$ is in excess.
Step 3: Calculate the mass of product
$23.4{\text { mole } \mathrm{O}_{2}}^{*}\left(4 \mathrm{~mole} \mathrm{NO} / 5 \mathrm{~mole} \mathrm{O}_{2}\right){ }^{*} 30.01 \mathrm{~g} \mathrm{NO} / \mathrm{mole} \mathrm{NO}=\mathbf{5 6 2} . \mathbf{g ~ N O}$ \leftarrow Stoichiometric Factor $\rightarrow \quad \leftarrow$ Cnvt g to moles \rightarrow
Note: you arranged ratios above so units cancel out and give your answer in grams of NO
Step 4: Calculate the mass of excess reactant
23.4 mole $_{2}{ }_{2}^{*}\left(4 \mathrm{~mole}_{\mathrm{NH}_{3} / 5}\right.$ mole $\left.\mathrm{O}_{2}\right)=18.8 \mathrm{~mole} \mathrm{NH} 3$ is required \leftarrow Stoichiometric Factor \rightarrow
Note: you arranged Stoich Factor above so units cancel out and give your answer in moles NH3 Excess moles $\mathrm{NH}_{3}=44.0$ mole NH_{3} available -18.8 mole required $=25.2$ mole NH_{3} excess Excess $\mathrm{g} \mathrm{NH} \mathrm{NH}_{3}=25.2{\mathrm{~mole} \mathrm{NH}_{3} *}^{*} 17.03 \mathrm{~g} / \mathrm{mole} \mathrm{NH}_{3}=429 \mathbf{g ~ N H} 3$ in excess

METHOD \#2 The Amounts Table

Equation	$4 \mathrm{NH}_{3} \uparrow+$	$5 \mathrm{O} 2 \uparrow \rightarrow$	4 NO 个 +	$6 \mathrm{H} 2 \mathrm{O} \uparrow$
Initial Amount	44.0 mole	23.4 mole	0	0
Change in Amount	$\begin{aligned} & -(4 / 5)^{*} 23.4 \text { mole }^{* 1} \\ & -18.8 \text { mole } \end{aligned}$	-23.4 mole	$\begin{aligned} & +(4 / 5)^{*} 23.4 \text { mole } \\ & +18.8 \text { mole } \end{aligned}$	$\begin{aligned} & +(6 / 5)^{*} 23.4 \text { mole } \\ & +28.1 \text { mole } \end{aligned}$
Amount after Rx	25.2 mole	o mole	18.8 mole	28.1 mole
*1 from above:	$\begin{array}{r} -\left(4 \mathrm{NH}_{3} / 5 \mathrm{O}_{2}\right) * 23 \\ \mid \rightarrow \text { Stoichio } \end{array}$	4 mole O_{2} metric coef	$\left.\mathrm{NH}_{3} / 5\right) * 23.4$ ent to convert am	$\text { of } \mathrm{O}_{2} \text { to } \mathrm{NH}_{3}$

All of the O_{2} is used up (o moles remain), 25.2 moles of the 44.0 moles of NH_{3} are used, 18.8 moles of NO is generated as well as 28.1 moles of $\mathrm{H}_{2} \mathrm{O}$. The weights can be determined as above.

Calculate the "Whole Entity" $4 \mathrm{NH}_{3}=4$ * $17.04=68.16 \mathrm{~g} / \mathrm{Mole}$ " $4 \mathrm{NH}_{3}$ " $5 \mathrm{O}_{2} \quad=10{ }^{*} 16.00=160.00 \mathrm{~g} / \mathrm{Mole}$ " $5 \mathrm{O}_{2}$ "

Equation

> Weight
> "Moles"
$4 \mathrm{NH}_{3} \uparrow+$
$5 \mathrm{O}_{2} \uparrow \rightarrow 4 \mathrm{NO} \uparrow+6 \mathrm{H}_{2} \mathrm{O} \uparrow$
750.g
750.g
11.0 "Moles"
4.68 "Moles"

The $5 \mathrm{O}_{2}$ at 4.68 "Moles" is the smallest amount, so it is the limiting reagent.
Amount of $4 \mathrm{NH}_{3}=4.68$ "Moles" $=4.68 * 68.16 \mathrm{~g} / " \mathrm{Mole"}=318.988=\mathbf{3 1 9} \mathbf{g} \mathbf{N H}_{3}$ used
Excess $\mathrm{NH}_{3}=750 . \mathrm{g}-319 . \mathrm{g}=431 . \mathrm{g} \mathrm{NH} 3$ in excess
Interactive Example 4.2 Student should know how to do this problem!
How much methanol is formed? Which compound is in excess and by how much?

$$
\begin{gathered}
\mathrm{CO} \uparrow \\
356 \mathrm{~g}
\end{gathered}+\underset{2 \mathrm{H}_{2} \uparrow}{65.0 \mathrm{~g}} \rightarrow \underset{\mathrm{CH}_{3} \mathrm{OH}}{(\mathrm{l})}
$$

METHOD \#3 Moles of Reaction -"Moles"

For the reaction: $\quad 2 \mathrm{CO} \uparrow+\mathrm{O}_{2} \uparrow \rightarrow 2 \mathrm{CO}_{2} \uparrow$ we have 9.5 g CO and xcs O 2 determine amt CO 2
$\mathbf{M w C O}=12.00 \mathrm{~g} / \mathrm{mole} \mathrm{C} \quad \mathbf{M w C O 2}=12.00 \mathrm{~g} / \mathrm{mole} \mathrm{C}$

$$
\frac{16.00 \mathrm{~g} / \mathrm{mole} \mathrm{O}}{28.00 \mathrm{~g} / \mathrm{mole} \mathrm{CO}}
$$

$32.00 \mathrm{~g} / \mathrm{mole} 20$ $44.00 \mathrm{~g} / \mathrm{mole} \mathrm{CO}_{2}$

Starting with 9.5 g CO , excess O 2 , how much CO 2 in moles and g is produced
1 "Mole" of $\mathrm{CO}=2 \mathrm{CO} \quad 1$ "Mole" of $\mathrm{O} 2=\mathrm{O} 2 \quad 1$ "Mole" of $\mathrm{CO} 2=2 \mathrm{CO} 2$
The "Mole of 2 CO" equals $2 \mathrm{CO}=2 * 28.00 \mathrm{~g} / \mathrm{mole} \mathrm{CO}=56.00 \mathrm{~g} / \mathrm{mole}$ "Mole of $\mathbf{2}$ CO" The "Mole of $2 \mathrm{CO}_{2}$ " equals $2 \mathrm{CO}_{2}=2{ }^{*} 44.00 \mathrm{~g} / \mathrm{mole} \mathrm{CO}=88.00 \mathrm{~g} / \mathrm{mole}$ "Mole of $2 \mathrm{CO}_{2}$ "
9.5 g
2 CO
Xcs ?
$2 \mathrm{CO} \uparrow \quad+\quad \mathrm{O}_{2} \uparrow \rightarrow \quad 2 \mathrm{CO}_{2} \uparrow$ $56.00 \mathrm{~g} / \mathrm{mole} \quad 88.00 \mathrm{~g} / \mathrm{mole}$

Set up the relationship: $\quad \frac{9.5 \mathrm{~g}}{56.00 \mathrm{~g} / \mathrm{mole}} \quad=\quad \frac{\mathrm{X}}{88.00 \mathrm{~g} / \mathrm{mole}}$.

$$
\mathbf{X}=14.928=15 . \mathbf{g ~ C O}_{2}
$$

4.3 Percent Yield

Theoretical yield is the maximum mass of product that can be obtained from a chemical reaction
Actual yield is the mass of material actually obtained in the laboratory
Percent yield specifies how much of the theoretical yield was obtained
\% Yield $=100$ \% * Actual Yield / Theoretical Yield

$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3} \downarrow+$
Salicylic Acid

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$ (1)
Acetic Anhydride

$+\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4} \downarrow$
Aspirin
Acetic Acid

Problem: 14.4 g Salicylic Acid + Xcs Acetic Anhydride $\rightarrow 6.26$ g Aspirin + some acetic acid What is the Percent Yield?

Best method to calculate the Molecular Weight:

Salicylic Acid
$\begin{array}{lll}\text { C } & 7 \text { * } 12.01 & 84.07\end{array}$
H 6 * $1.008 \quad 6.036$
$0 \quad 3$ * $16.00 \quad 48.00$ TOTAL 138.106
Sig Digits TOTAL $138.11 \mathrm{~g} /$ mole

Aspirin
9 * 12.01
** 1.008
$4^{*} 16.00$
You must show this calculation 108.09
8.064
64.00
180.159
$180.16 \mathrm{~g} / \mathrm{mole}$

Calculate the number of moles of Salicylic Acid
14.4 g Salicylic Acid * [1 mole Salicylic Acid / 138.11 g Salicylic Acid] = $\mathbf{0 . 1 0 4}$ mole Salicylic Acid Note: Arrange conversion so g Salicylic Acid cancels out
Calculate the moles of Aspirin from the moles of starting material and Stoich Conv Factor 0.104 mole Salicylic Acid * [1 mole Aspirin / 1 mole Salicylic Acid] = $\mathbf{0 . 1 0 4}$ mole Aspirin

Note: Arrange conversion so mole Salicylic Acid cancels out
Convert moles of Aspirin to grams of Aspirin
0.104 mol Aspirin * 180.16 g Aspirin / 1 mole Aspirin $=\mathbf{1 8 . 8} \mathrm{g}$ Aspirin

Note: mole Aspirin cancels out
This is the Max you can get or the Theoretical 100\% Yield
\% Yield $=100 \%$ * Actual Yield $/$ Theoretical Yield $=100 \%{ }^{*} 6.26 \mathrm{~g} / 18.8 \mathrm{~g}=\mathbf{3 3 . 3} \%$ vield

4.4 Chemical Equations and Chemical Analysis

Quantitative Analysis of a mixture determines the amount of one compound in a mixture
Vinegar is an aqueous solution of acetic acid. You can titrate the acid with a base to determine the amount of acetic acid in vinegar:

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH} \\
& \text { (aq) } \\
& \text { Acetic Acid }
\end{aligned}+\underset{\text { Strong Base }}{\mathrm{NaOH}}{ }_{(\mathrm{aq})} \rightarrow \underset{\text { Acetate (a salt) }}{\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})}+\mathrm{Na}^{+}(\mathrm{aq})+\underset{\text { Water }}{\mathrm{H-OH}}{ }_{(\mathrm{l})} \text { (acid }+ \text { base } \rightarrow \text { salt + water) }
$$

This is performed using a titration with an indicator solution to determine the endpoint (when all of the acid is neutralized by the base). Knowing how much base you used, you can determine the amount of acetic acid in the vinegar solution. This analysis is performed in most Chem I and II lab experiments. See the following on my Chemistry web pages:

Titration Notes 19-Oct-2009.pdf
--- and ---
Notes Titration Notes Standardizing NaOH against KHP 28-Oct-2009.pdf

Problem: The mineral Thenardite is mostly Sodium Sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}$. If you react a weighted amount of the mineral with Barium Chloride, Barium Sulfate will precipitate out. You dry and weigh the BaSO_{4} and then can back calculate the amount of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \\
& \text { Weighed Amt }
\end{aligned}+\underset{\mathrm{Xcs}}{\mathrm{BaCl}_{2}(\mathrm{aq})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}+\underset{\text { Weigh the ppt }}{\mathrm{BaSO}_{4} \downarrow}
$$

1 mole of BaSO_{4} precipitated out represents 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample.
Example 4.3 Mineral Analysis for Nickel (II) Sulfide, NiS. 0.468 g of the mineral sample produces 0.206 g of $\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}$. How much NiS is in the sample?

React the sample with Nitric Acid to dissolve it:

0.468 g sample

React the resulting solution with dimethylglyoxime, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$ to form the ppt:

$$
\underline{\mathbf{N i}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{aq})} \rightarrow \frac{\mathbf{N i}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \downarrow}{0.206 \mathrm{~g} \mathrm{red} \mathrm{ppt}}+2 \mathrm{HNO}_{3}(\mathrm{aq})
$$

1 mole of Nickel (II) Sulfide, $\underline{\mathbf{N i}} \mathbf{S}$ results in 1 mole of $\mathbf{N i}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \downarrow$
Calculate the Mw $\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}$
NiS

1 Ni	$1^{*} 58.69$	58.69	1 Ni	$1^{*} 58.69$	58.69
8 C	$8^{*} 12.01$	96.08	1 S	$1^{*} 32.07$	32.07
16 H	$16^{*} 1.008$	16.128			90.76

$4 \mathrm{~N} \quad 4^{*} 14.01 \quad 56.04 \quad$ Correct Sig Digits $\quad 90.76$ g/mole NiS
$4 \mathrm{O} \quad 4 * \underset{\text { Total }}{\text { 16.00 }} \frac{64.00}{290.938}$
Correct Sig Digits $290.94 \mathrm{~g} / \mathrm{mole} \mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2} \quad$ NOTE BOOK VALUE DIFFERS! Moles of $\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}=0.206 \mathrm{~g}$ of $\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} * 288.9 \mathrm{~g} / \mathrm{mole} \mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}=7.13 \times 10^{-4} \mathrm{moles}$ g of NiS $=7.13 \times 10^{-4}$ moles $\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}{ }^{*}\left(1\right.$ mole NiS $/ 1$ mole $\left.\mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right)$ *
(90.75 g NiS $/ \mathrm{mole} \mathrm{Nis}$) $=\mathbf{0 . 0 6 4 7} \mathbf{g}$ Nis
\% Nis $=100 \%$ * Actual Yield $/$ Theoretical Yield $=100 \%$ * 0.0647 g Nis $/ 0.468 \mathrm{~g}$ sample $=$
$\mathbf{1 3 . 8}$ \% NiS
Determining the Formula of a Compound by Combustion

Burning an organic compound (contains $\mathrm{C}, \mathrm{H}, \mathrm{N}$, and O) with excess oxygen will produce CO 2 and H 2 O and Nitrogen is determined by a separate analysis. The amount of these materials can be determined (see above). From this data you can calculate the empirical formulae of the organic compound. Note: Nitrogen and Oxygen cannot be determined by this method!

Example $4.4 \quad 1.125 \mathrm{~g}$ of a liquid hydrocarbon (C and H) was burned and produced 3.447 g of CO 2 and 1.647 g of H 2 O . The Mw was found to be $86.2 \mathrm{~g} / \mathrm{mole}$. What are the empirical and molecular formulae of this compound?

CO2 1 C $1^{*} 12.01 \quad 12.01 \mathrm{~g} / \mathrm{mole}$
$2 \mathrm{O} \quad 2 * 16.00 \quad 32.00 \mathrm{~g} / \mathrm{mole}$
$\mathrm{CO2} \mathrm{Mw}=44.01 \mathrm{~g} / \mathrm{mole}$

$$
\begin{array}{rlll}
\text { H2O } 2 \mathrm{H} & 2^{*} 1.008 & 2.016 \mathrm{~g} / \mathrm{mole} \\
1 \mathrm{O} & 1^{*} 16.00 & \underline{16.00 \mathrm{~g} / \mathrm{mole}} \\
\text { H2O } & \mathbf{M w} & =\mathbf{1 8 . 0 1 6} \mathbf{g} / \mathrm{mole}
\end{array}
$$

1.647 g H2O / 18.016 g/mole H2O = o. 09142 mole H2O

Convert to mole of C and H in the unknown
0.07832 mole CO 2 * (1 mole C in the unknown/ 1 mole CO2) $\quad=0.07832$ mole C
0.09142 mole H2O * (2 mole H in the unknown / 1 mole H2O) $=0.18284$ mole H

The C/H mole ratio is (0.18284 mole H / 0.07832 mole C) $=2.335 \mathrm{H} / \mathrm{C}$
2.335 is not a whole number - you can't have 2.3 parts of an atom, so multiply it by
$2^{*} 2.335=4.670$, which also is not a whole number
$3 * 2.335=7.005$ which is a whole number.

The Empirical Formulae is $\mathbf{C}_{3} \mathbf{H}_{7}$

The Mw of $\mathrm{C}_{3} \mathrm{H}_{7}$ is $3 \mathrm{C} \quad 3$ * $12.01 \quad 36.03$
$7 \mathrm{H} \quad 7^{*} 1.008 \quad 7.056$
$\mathrm{Mw}=\quad 43.086=43.09 \mathrm{~g} / \mathrm{mole}($ Sig Digits $)$
The Molecular Formulae = Empirical Formulae * Multiplier
Multiplier $=\mathrm{Mw}$ of the compound $/ \mathrm{Mw}$ of the Empirical Formulae $=86.2 / 43.09=2$
Molecular Formulae $=2{ }^{*} \mathrm{C}_{3} \mathrm{H}_{7}=\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 4}}$
This example is a little different; it has Oxygen which we cannot measure directly
Example 4.5 Carbon, Hydrogen and Oxygen analysis. o.513 g of a compound produces $\mathbf{5 . 0 1} \mathrm{g}$ of $\mathrm{CO2}$ and $\mathbf{0 . 1 0 3} \mathrm{g}$ of $\mathbf{H 2 O}$. What are the empirical and molecular formulae of this compound? NOTE: The amount of Oxygen is not given - there may or may not be Oxygen in the compound!

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \rightarrow \mathrm{xCO}_{2}+\mathrm{y} \mathrm{H}_{2} \mathrm{O} \\
& 0.513 \mathrm{~g} \quad 5.01 \mathrm{~g} \quad 0.103 \mathrm{~g}
\end{aligned}
$$

1. Determine the moles of Carbon and Hydrogen in the sample
5.01 g CO 2 * $(1 \mathrm{~mole} \mathrm{CO} 2 / 44.01 \mathrm{~g} \mathrm{CO} 2)$ * $(1 \mathrm{~mole} \mathrm{C}) /(1 \mathrm{~mole} \mathrm{CO} 2) \quad=\mathbf{0 . 0 1 4 4}$ mole \mathbf{C}
$0.103 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ * $(1$ mole $\mathrm{H} 2 \mathrm{O} / 18.02 \mathrm{~g} \mathrm{H2O}) *(2$ mole H$) /(1$ mole H 2 O$) \quad=\mathbf{0 . 0 1 1 4}$ mole H
2. Convert Moles to grams of each element in the original sample
0.0144 mole C * $(12.01 \mathrm{~g} \mathrm{C} /$ mole $C)=0.137 \mathrm{~g} \mathrm{C}$ in the original sample
0.014 mole $\mathrm{H}^{*}(1.008 \mathrm{~g} \mathrm{H} / \mathrm{mole} \mathrm{H})=0.0115 \mathrm{~g} \mathrm{H}$ in the original sample

Determine the amount of Oxygen in the sample
0.513 g compound $-0.137 \mathrm{~g} \mathrm{C}-0.0115 \mathrm{~g} \mathrm{H}=0.364 \mathrm{~g}$ Oxygen in the original sample
3. Convert to moles
$0.365 \mathrm{~g} \mathrm{O}^{*}(1 \mathrm{~mole} \mathrm{O} / 16.00 \mathrm{~g} \mathrm{O})=0.0228$ mole O in the original sample
4. Find the O / C ratio
o. 0228 mole O / o.o144 mole C = 2 O for every C

Above we determined that for every 0.0114 mole of C there is 0.0114 mole of $\mathrm{H}-\mathrm{a} 1$ to 1 ratio
5. So the empirical formulae $=\mathrm{C}_{1} \mathrm{H}_{1} \mathrm{O}_{2} \quad \mathrm{Mw}=1 \mathrm{C} \quad 1^{*} 12.01 \quad 12.01$
$1 \mathrm{H} \quad 1$ * $1.008 \quad 1.008$
$20 \quad 2 * 16.00 \quad 32.00$
$\mathbf{M w ~ C} \mathbf{C}_{1} \mathbf{H}_{1} \mathrm{O}_{2}=45.018=\mathbf{4 5 . 0 2} \mathrm{g} / \mathrm{mole}$
6. The Mw of the compound is 86.2 , but the Mw of $\mathrm{C}_{1} \mathrm{H}_{1} \mathrm{O}_{2}=45.02 \mathrm{~g} / \mathrm{mole}$

Factor $=86.2 \mathrm{~g} / \mathrm{mole} / 45.02 \mathrm{~g} / \mathrm{mole}=1.9147=2$
Molecular Formulae $=2{ }^{*}$ Empirical Formulae $=\mathbf{C}_{2} \mathbf{H}_{2} \mathbf{O}_{\mathbf{4}}$

4.5 Measuring Concentrations of Compounds in Solution

Molarity $=$ Moles of Solute $/$ Liters of Solvent $=$ Moles $/ L=\mathbf{M}$
See: Titration Notes 19-Oct-2009.pdf on my web pages
58.4 g of NaCl is added to water in a 1 liter volumetric flask and it is filled to the mark with water
$\mathrm{Mw} \mathrm{NaCl}=22.99+35.45=58.44 \mathrm{~g} / \mathrm{mole}$
Molarity $=\mathbf{M}=$ Moles $/ \mathbf{L}=58.4 \mathrm{~g} \mathrm{NaCl} /(58.4 \mathrm{~g} / \mathrm{mole} * 1.000 \mathrm{~L})=\mathbf{1 . 0 0} \mathbf{~ M ~ N a C l}$
Important Molarity is Moles per Liter, that means you fill a volumetric first with the solute and then fill to the 1.00 Liter mark with solvent. You DO NOT add 1.00 Liter of solvent to the solute!

0.435 g KMnO 4 is put into a 250 ml volumetric and it is filled to the mark with DI. What is it's M?

Mw KMnO4

$$
\begin{array}{llc}
1 \mathrm{~K} & 1^{*} 39.10 & 39.10 \\
1 \mathrm{Mn} & 1^{*} 54.94 & 54.94 \\
4 \mathrm{O} & 4^{*} 16.00 & \underline{64.00} \\
& & \mathbf{1 5 8 . 0 4} \mathbf{~} / \mathbf{m o l e}
\end{array}
$$

Moles of KMnO4 $=0.435 \mathrm{~g} \mathrm{KMnO} 4 / 158.04 \mathrm{~g} / \mathrm{mole}=0.0027524=2.75 \times 10^{-3} \mathrm{Mole} \mathrm{KMnO} 4$
$\mathbf{M ~ K M n O 4}=$ Moles $/ \mathrm{L}=2.75 \times 10^{-3} \mathrm{Mole} \mathrm{KMnO} 4 / 0.250 \mathrm{~L}=0.0110096=\mathbf{1 . 1 0} \times 1 \mathbf{1 0}^{-2} \mathbf{M}$ Note loss of SD in books answer!
This solution contains 1.10×10^{-2} moles/Liter of K^{+}and $1.10 \times 10^{-2} \mathrm{moles} / \mathrm{L}$ of MNO_{4}^{-}
If we had a 0.10 M CuCl 2 , it would contain: $\quad \mathrm{CuCl}_{2} \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
Or o. $10 \mathrm{M} \mathrm{Cu}^{2+}$ and $\mathbf{0 . 2 0} \mathrm{M} \mathrm{Cl}^{-}$
Preparing Solutions of Known Concentration
How do you prepare 2.00 L of $1.50 \mathrm{M} \mathrm{Na} 2 \mathrm{CO}_{3}$?

$$
\begin{aligned}
& \begin{array}{llll}
\text { Mw } & 2 \mathrm{Na} & 2 * 22.99 & 45.98
\end{array} \\
& 1 \mathrm{C} \quad 1 \text { * } 12.01 \quad 12.01 \\
& 3 \mathrm{O} \quad 3 * 16.00 \quad 48.00 \\
& \mathbf{M w}=\mathbf{1 0 5 . 9 8 8 . 0 0} \mathrm{g} / \mathrm{mole}
\end{aligned}
$$

$\mathbf{M}=$ Moles $/ \mathbf{L}=\mathbf{g} /\left(\mathbf{M w}^{*} \mathbf{L}\right)$

$9 \mathrm{~g} /$ mole

Rearrange: $\mathbf{g}=\mathrm{M} * \mathrm{Mw}^{*} \mathrm{~L}=1.50 \mathrm{M} * 106.0 \mathrm{~g} / \mathrm{mole}{ }^{*} 2.00 \mathrm{~L}=318 . \mathbf{g}$ Na2CO3
To prepare the solution: Take 318 . g Na 2 CO 3 place it in a 2.00 L volumetric. Fill the volumetric to the 2.00 L mark with DI.

Diluting a More Concentration Solution $\quad \underline{\text { M1V1 }}=\mathbf{M 2 V 2}=\mathbf{M o l e s}=\mathbf{g} / \mathbf{M w}$
Problem: You need 500. ml of o.0010 M K2Cr2O7, you have 0.100 M K 2 Cr 2 O 7

$$
\mathrm{V} 2=\mathrm{M} 1 \mathrm{~V} 1 / \mathrm{M} 2=500 . \mathrm{ml} * 0.0010 \mathrm{M} / 0.100 \mathrm{M}=5.00 \mathrm{ml}
$$

To prepare the solution: Take 5.00 ml of $0.100 \mathrm{M} \mathrm{K} 2 \mathrm{Cr2O} 7$ place it in a $500 . \mathrm{ml}$ volumetric, Fill to the mark with DI

Problem: What is the concentration of Fe^{3+} in a solution of diluting 1.00 ml of $0.236 \mathrm{M} \mathrm{Fe}^{3+}$ to 100.0 ml ?

$$
\begin{aligned}
& \mathrm{M} 1 \mathrm{~V}_{1}=\mathrm{M} 2 \mathrm{~V}_{2} \quad \text { Rearrange: } \mathrm{M} 2=\mathrm{M} 1 \mathrm{~V} 1 / \mathrm{V}_{2} \\
& \mathrm{M} 2=0.236 \mathrm{M}^{*}{ }^{*} 1.00 \mathrm{ml} / 100.0 \mathrm{ml}=\mathbf{2 . 3 6} \times \mathbf{1 0}^{-3} \mathbf{~ M}
\end{aligned}
$$

Serial Dilutions: dilute 10.0 ml of $0.550 \mathrm{~mol} / \mathrm{l}$ of NaCl to 100.0 ml . Then dilute 5.00 ml to 100.0 ml . What is the final NaCl concentration?

$$
\begin{aligned}
& 1^{\text {st }} \text { dilution: } \mathrm{M} 1 \mathrm{~V} 1=\mathrm{M} 2 \mathrm{~V} 2 \\
& \text { Rearrange: } \mathbf{M 2}=\mathrm{M} 1 \mathrm{~V} 1 / \mathrm{V} 2=0.550 \mathrm{M} * 10.0 \mathrm{ml} / 100.0 \mathrm{ml}=\mathbf{0 . 0 5 5 0} \mathbf{M} \\
& 2^{\text {nd }} \text { dilution } \\
& \mathbf{M 2}=\mathrm{M}_{1} \mathrm{~V} 1 / \mathrm{V} 2=0.0550 \mathrm{M}^{*} 5.00 \mathrm{ml} / 100.0 \mathrm{ml}=0.00275=\mathbf{2 . 7 5} \mathbf{\times 1 0} \mathbf{1 0}^{-3} \mathbf{M}
\end{aligned}
$$

See text book for more examples
4.6 pH, a Concentration Scale for Acids and Bases
$\mathbf{p H}=-\log \left[\mathrm{H3O}^{+}\right]$
pH of Vinegar
pH of Pure Water
pH of Blood
pH of Ammonia Water
$=-\log \left(1.6 \times 10^{-3} \mathrm{M}\right)$
$=-\log \left(1.0 \times 10^{-7} \mathrm{M}\right) \quad=-(-7.00)=7.00$
$=-\log \left(4.0 \times 10^{-8} \mathrm{M}\right) \quad=-(-7.40)=7.40$
$=-\log \left(4.3 \times 10^{-12} \mathrm{M}\right) \quad=-(-11.37)=11.37$

For aqueous solutions at $25^{\circ} \mathrm{C}, \mathrm{pH}$ values less than 7 are acidic, greater than 7 are basic, at 7 is neutral

Hydronium Ion concentration from $\mathbf{p H}$
 $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathbf{1 0}^{-\mathrm{pH}}$

Diet Soda has a ph of 3.12 , ? $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-3.12}=7.6 \times 10^{-4} \mathbf{M}$
Students need to be able to perform this calculation on their calculators!
pH is measured by a $\mathbf{p H}$ meter, it accurately measures $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$]

REMEMBER:

$$
\mathbf{M}_{1} \mathbf{V}_{1}=\mathbf{M}_{2} \mathbf{V}_{2}=\text { Moles }=\mathbf{g} / \mathbf{M w}
$$

Example 4.8 - Students do these!

4.7 Stoichiometry of Reactions in Aqueous Solution

How much CaCO_{3} is required to react with 25 ml of 0.750 M HCl ?

$$
\begin{aligned}
& \mathrm{CaCO}_{3} \downarrow+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{CO}_{3} \\
& \mid \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2} \uparrow \\
& \text { Moles of } \mathrm{HCl} \quad \mathrm{M}=\text { Moles } / \mathrm{L} \text { therefore: } \text { Moles }=\mathrm{M} \text { * } \mathrm{L} \\
& \text { Moles } \mathrm{HCl}=\mathrm{M}^{*} \mathrm{~L}=0.750 \mathrm{M}{ }^{*} 25 \mathrm{ml}{ }^{*} 1 \mathrm{~L} / \text { 1000. } \mathrm{ml}=0.01875 \text { moles } \mathrm{HCl}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{g} \text { of } \mathbf{C a C O}_{3}=0.009375{\text { moles } \mathrm{CaCO}_{3} * * 100.09 \mathrm{~g} / \mathrm{mole}^{*} \mathrm{CaCO}_{3}=0.93834=\mathbf{0 . 9 4} \mathbf{g ~ C a C O}}_{\mathbf{3}}
\end{aligned}
$$

OWL Example 4.9 Students need to work this problem
Titration: A method of Chemical Analysis
Titration involves quantitatively adding on solution to another using a accurate measuring device such as a burette. The point where the reaction of solution A is quantitatively completed against solution B is called the end point or equivalence point - equal molar amounts of acid and base have reacted. This is usually determined using an indication such as phenolphthalein.

OWL Example 4.10 1.034 g of oxalic acid is dissolved in water and an end point indicator added. This sample was titrated with 0.485 M NaOH and an end point reached when 34.47 ml of NaOH was added. What is the mass (wt) and mass \% of oxalic acid in the original sample?

Oxalic Acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
Write the equation: $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}$

$$
1.034 \mathrm{~g} \quad 34.47 \mathrm{ml} \text { of } 0.485 \mathrm{M}
$$

Moles of $\mathbf{N a O H}=\mathbf{M o l a r i t y}{ }^{*}$ Volume $=0.485$ Moles/Liter * $34.47 \mathrm{ml}{ }^{*} 1 \mathrm{~L} / 1000 . \mathrm{ml}=$ 0.0167179 moles NaOH

***** $\quad * * * * * \quad$ Important Below
Oxalic Acid has 2 Acid Functions (-COOH), so it takes 2 moles of NaOH for each mole of Oxalic Acid Moles of Oxalic Acid (OA) = moles NaOH * (1 mole oxalic acid $/ 2$ moles NaOH) = 0.0167179 moles * (1 mole oxalic acid / 2 moles NaOH) $=0.0083589$ moles OA

Mw Oxalic Acid

\[

\]

Moles of Oxalic Acid = Wt in g Oxalic Acid/ Mw Oxalic Acid Then Rearrange:
Wt in g OA $=$ Moles of $\mathrm{OA} * \mathrm{Mw} \mathrm{OA}=0.0083589$ moles $\mathrm{OA}^{*} 90.04 \mathrm{~g} \mathrm{OA} / \mathrm{mole} \mathrm{OA}=$ $0.7526353=0.753 \mathrm{~g} \mathrm{OA}$
\% of OA in the sample $=100 \%$ * amount of pure material found $/$ wt of sample $=$ 100% * 0.753 g OA / 1.034 g sample $=72.8$ \% Oxalic Acid
***** $* * * * * \quad$ Important Below $* * * * * \quad * * * * *$
Standardizing an Acid or Base is the procedure in which the concentration of a compound in a solution is accurately determined by titration against a primary standard. A solid material that can be dried and accurately weighted is used for this standardization.

Sodium Carbonate, Na 2 CO 3 is a weak base and can be used to standardize an acid such as $\mathrm{HCl}_{(1)}$.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\underset{\mid \rightarrow \mathrm{H} 2 \mathrm{O}}{\mathrm{H} 2 \mathrm{CO}_{3}}+\mathrm{CO}_{2} \uparrow
$$

Potassium Acid Phthalate (KHP) is a weak acid and can be used to standardize a base such as $\mathrm{NaOH}_{(1)}$

$$
+\quad \mathrm{NaOH} \rightarrow \quad \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{2-} \mathrm{K}^{+} \mathrm{Na}^{+}+\mathrm{H}-\mathrm{OH}
$$

Example 4.11 $0.263 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ requires 28.35 ml of $\mathrm{HCl}(\mathrm{aq})$ for the titration endpoint. What is the molarity, M , of the HCl ?

\[

\]

M1V1 $=$ M2V2 $=$ Moles $=\mathbf{g} / \mathbf{M w}$
Rearrange: $\mathrm{M}_{1}=\mathrm{g} /\left(\mathrm{Mw}^{*} \mathrm{~V}_{1}\right)$
$\mathrm{M} 1=\mathrm{g} \mathrm{Na} 2 \mathrm{CO} 3 / \mathrm{Mw} \mathrm{Na} 2 \mathrm{CO} 3 * \mathrm{~V}_{1} \mathrm{HCl}=$
$\frac{0.263 \mathrm{~g} \mathrm{Na} 2 \mathrm{CO} 3}{*} \frac{1 \text { mole Na2CO} 3}{106.0 \mathrm{~g} \mathrm{Na} 2 \mathrm{CO} 3} * \frac{2 \text { mole } \mathrm{HCl}}{1 \text { mole Na2CO3 }} * \frac{1}{28.35 \mathrm{ml} \mathrm{HCl}} * \frac{1000 . \mathrm{ml}}{1 \mathrm{~L}}=\mathbf{0 . 1 7 5 \mathrm { M }}$

Determining Molar Mass by Titration

Using the following equation basic equation: M1V1 $=\mathbf{M 2 V 2}=\mathbf{M o l e s}=\mathbf{g}{ }^{*} \mathbf{M w}$, with the proper input values, we can determine the Mw of a compound using titration.

OWL Example 4.121 .056 g of an unknown acid, HA was titrated with 33.78 ml of 0.256 M NaOH according to the following equation: What is HA Mw?

$$
\begin{aligned}
& \mathrm{HA}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \quad \rightarrow \quad \mathrm{NaA}(\mathrm{aq})+\mathrm{H}-\mathrm{OH}_{(\mathrm{l})} \\
& 1.056 \mathrm{~g} \quad 33.78 \mathrm{ml} \text { of } 0.256 \mathrm{M} \quad \text { ? Mw } \\
& \mathrm{Mw}=\mathrm{g} / \mathrm{M} 1 \mathrm{~V} 2=1.056 \mathrm{~g} /(0.256 \mathrm{M} \mathrm{NaOH} * 33.78 \mathrm{ml}) *(1 \mathrm{~L} / 1000 . \mathrm{ml})=
\end{aligned}
$$

Titrations Using Oxidation-Reduction Reactions

Redox reactions concentrations can also be determined using titration, equation is given below $1.026 \mathrm{~g} \mathrm{Fe}^{2+}$ containing sample titrated with 24.35 ml of 0.0195 M KMnO 4 . What is the $\%$ of Fe^{2+} in the sample? $\mathrm{MnO}^{4-}{ }^{(\mathrm{aq})}+\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+12 \mathrm{H}_{2} \mathrm{O}$ (1) 24.35 ml 0.0195 M 1.026 g

Moles of $\mathrm{Fe}^{2+}=$ Moles $\mathrm{MnO}^{-}{ }^{*}\left(5 \mathrm{Fe}^{2+} / 1 \mathrm{MnO}^{-}\right)=\quad$ Remember Moles $=\mathrm{M} 1 \mathrm{~V} 1$
(0.0195 moles $\left./ L^{*} 24.35 \mathrm{ml}^{*}[1 \mathrm{~L} / 1000 . \mathrm{Ml}]\right)^{*}\left(5 \mathrm{Fe}^{2+} / 1 \mathrm{MnO}^{-}\right)=0.2374$ moles of Fe^{2+} Moles $=\mathrm{wt} / \mathrm{Mw} \quad \mathrm{wt}=$ moles ${ }^{*} \mathrm{Mw}=0.2374$ moles of $\mathrm{Fe}^{2+}{ }^{*} 55.85 \mathrm{~g} / \mathrm{mole}=0.13258=\mathbf{0 . 1 3 3} \mathbf{g} \mathbf{~ F e}$ $\% \mathrm{Fe}^{2+}=100 \%$ * wt pure compound $/$ wt of sample $=100 \%$ * $0.133 \mathrm{~g} \mathrm{Fe} / 1.026 \mathrm{~g}$ sample $=\mathbf{1 2 . 9} \% \mathbf{~ F e}$
4.8 Spectrophotometry is the quantative measure of the extent of light absorption by a sample. The extent of light absorption of spectrum of the sample is measured using a spectrophotometer:

Transmittance, Absorbance and the Beer-Lambert Law
Transmittance or \% Transmittance is the ratio of the amount of light that is transmitted (passes through or is not absorbed) to the amount of incident light (fell on the sample).

Transmittance (T) = P / Po
Absorbance (A) is the amount of light that is absorbed by the sample $=\mathbf{A}=-\boldsymbol{\operatorname { l o g }} \mathbf{T}=-\boldsymbol{\operatorname { l o g }} \mathbf{P} / \mathbf{P o}$ Absorbance is also related to the concentration of the sample by: $\mathbf{A}=€^{*} \mathbf{1}^{*} \mathbf{c}$
$\boldsymbol{\ell}=$ molar absorptivity $=\mathrm{L} /$ mole ${ }^{*} \mathrm{~cm}$
$\mathbf{l}=$ the pathlength of the cell in cm
$\mathbf{c}=$ the concentration in mole $/ \mathrm{L}$

The light absorbance of a sample is directly proportional to the concentration of the sample.

Spectrophotometric Analysis

1. Properly dilute the sample and record the spectrum, usually in the entire UV ($350 \mathrm{~nm}->250$ nm) or Visible ($600 \mathrm{~nm}->350 \mathrm{~nm}$). The maximum absorbance peak should be between 0.7 and 1.0 absorbance units. If not, redilute the sample and re-run the spectrum. Curve 2 below is not acceptable, Curve 1 is acceptable.

2. Choose a wavelength were the peak is widest and stongest.
3. Prepare a calibration plot of known concentration vs absorbance at a particular wavelength
4. Determine the concentration of the unknown by running it's curve and comparing its absorbance at the wavelength to the calibration curve.

Example 4.14 A solution of KMnO_{4} has an A of 0.539 at 540 nm in a 1 cm cell. What is it's concentration based on the following data:
[KMnO4 (M)]
0.0300
0.0600
0.0900

A
0.162
0.330
0.499

From the calibration curve, the sample has a concentration of o.0969 M

Below is an actual analysis of a developer solution analysis that I developed at Eastman Kodak. The spectra were recorded directly to a computer. We first recorded the Ultra Violet spectra of a pure sample of each of the ingredients in the developer solution and stored it on the computer. We then recorded the spectrum of the actual developer and had the computer perform a mathematical fit of the components curves and accurately determine the concentration of each of the components. The analysis took about 10 minutes to perform and was accurate to 3 SD!

Antacids

$\mathrm{NaHCO}_{3}, \mathrm{KHCO}_{3}, \mathrm{CaCO}_{3}, \mathrm{Mg}(\mathrm{OH}) 2$, and $\mathrm{Al}(\mathrm{OH}) 3$ are antacids, they react with HCl in the stomach to neutralize it.

Write Balanced Complete, Ionic and Net Ionic equations for each reaction
Tums contains 500 mg of CaCO 3 , what volume of $0.500 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, also known as stomach acid will it neutralize? How much gas is given off (1 mole of a gas occupies 22.4 L).

Rolaids contains CaCO_{3} and $\mathrm{Mg}(\mathrm{OH}) 2$. If 22.52 ml of 0.500 M HCl is neutralized by one tablet, and the one tablet contains 550 . mg of CaCO_{3}, how much $\mathrm{Mg}(\mathrm{OH}) 2$ is in the tablet?

